FF's Notes
← Home

条件概率分布

Nov 3, 2020

Description

对于离散型随机变量: $$ P(X_1=a_i|X_2=b_j)=P(X_1=a_i,X_2=b_j)/P(X_2=b_j) $$

对于连续型随机变量,其条件分布函数为: $\begin{aligned} &P(X_1\leq x_1|a\leq X_2\leq b) \\ &= P(X_1\leq x_1,a\leq X_2\leq b)/P(a\leq X_2\leq b) \\ &= \int_{-\infty}^{x_1}dt_1\int_a^bf(t_1,t_2)dt_2 / \int_a^b f_2(t_2) dt_2 \\ \end{aligned}$

其条件密度函数为: $$ f_1(x_1|a\leq X_2 \leq b)=\int_a^b f(x_1,t_2)dt_2 / \int_a^b f_2(t_2)dt_2 $$

联合密度函数: $$ f(x_1,x_2)=f_2(x_2)f_1(x_1|x_2)=f_1(x_1)f_2(x_2|x_1) $$

当边缘条件概率密度不依赖于其他随机变量,即: $$ f_1(x_1|x_2)=f_1(x_1) $$ 那么联合密度函数为: $$ f(x_1,x_2)=f_1(x_1)f_2(x_2) $$